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Abstract

CFD-based aeroelastic computations are performed to investigate the effect of nonlinear aerodynamics on transonic

limit cycle oscillation (LCO) characteristics of the NLR7301 airfoil section. It is found that the LCO solutions from

Navier–Stokes computations deviate less from the experiment than an Euler solution but strongly depend on the

employed turbulence model. The Degani–Schiff modification to the Baldwin–Lomax turbulence model provokes

spurious vorticity spots causing multiple shocks which might be unphysical, while the Spalart–Allmaras turbulence

model yields physically reasonable unsteady shocks. In the cases examined, smaller initial perturbations lead to larger

LCO amplitudes and vice versa, in contradiction to what one might expect. The amplitude of the initial perturbation is

also found to have an impact on the mean position of LCO. Also addressed in the paper are aspects of multiblock

message passing interface (MPI) parallel computation techniques as related to the present problem.

Published by Elsevier Science Ltd.

1. Introduction

Limit cycle oscillation (LCO) has been a prevalent aeroelastic problem on several current fighter aircraft

configurations. The phenomenon usually occurs for aircraft with external stores throughout, but not limited to, the

transonic flight regime (Denegri, 2000; Norton, 1990; Chen et al., 1998; Cunningham and Meijer, 1995), although a

business jet wing LCO was also reported recently (Edwards, 1996; Edwards et al., 2001). Complicated by the problem

geometry, e.g., the aircraft-store system, the LCO mechanisms still remain to be fully understood. In fact, there exist few

analytical techniques available for LCO prediction and an insufficient understanding of its physics.

With aerodynamic feedback, LCO is sustained periodic oscillation which neither increases nor decreases in amplitude

over time for a given flight condition. A series of researchers, notably Cunningham and Meijer (1995), believe that the

wing/store LCO is a purely aerodynamic phenomenon, largely due to transonic shock oscillation and shock induced

flow separation. This LCO scenario, which is sometimes referred to as the transonic shock/separation (TSS) model, has

been suggested by Edwards to be, with viscous effects, one of the major factors contributing to transonic LCO for wings

(Edwards, 1996; Edwards et al., 1983). On the other hand, Chen et al. (1998) proposed a radically different LCO model

based on the observation that wing/store LCO can be a post-flutter phenomenon whenever the flutter mode contains

low unstable damping. This type of flutter mode is called a ‘‘hump mode’’. Since the aircraft structure usually exhibits

some structural nonlinearities, such as friction, free-play, etc., the moderate growth of amplitudes corresponding to the
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low negative aerodynamic damping may be suppressed. The result is then a steady state oscillation. This is sometimes

referred to as the nonlinear structural damping (NSD) model of the aeroelastic LCO. Although not proven through

experimental tests or numerical simulations, results of the NSD model show excellent correlation with flight test LCO

data of a F-16 fighter configuration throughout subsonic and transonic Mach numbers (Chen et al., 1998; Mignolet

et al., 1999). It should be noted that the TSS and NSD models could either be sole agent of or could both contribute to

the observed LCO.

Recent renewed interest in LCO is perhaps motivated by the need to further understand the physics of LCO along

with the current implementation of CFD methodology in aeroelasticity. Among the potential computational methods

for LCO prediction/investigation, two will be mentioned here: the CFL3D code (version 6) (Biedron, 2002; Krist et al.,

1997; Bartels, 2000) developed and supported by NASA/Langley, and the proper orthogonal decomposition-based

reduced order model approach (Hall et al., 1999) originated by Dowell and Hall of Duke University. The former is a

conventional time-domain CFD method whereas the latter a frequency-domain CFD-based technique.

The present study uses a CFD time-marching method, CFL3D v6, to numerically investigate the transonic aeroelastic

LCO behavior of a supercritical airfoil section in conjunction with a two-degree-of-freedom plunge/pitch structural

model (Schewe and Deyhle, 1996; Knipfer et al., 1998; Knipfer and Schewe, 1999). It is reasonable to start with

investigating a two-dimensional LCO case in order to better understand the physics of LCO. However, because of the

complexity of a two-dimensional LCO experimental test, there is very little experimental data available for comparison.

To the best of our knowledge, the work performed by Schewe’s group in DLR (Schewe and Deyhle, 1996; Knipfer et al.,

1998; Knipfer and Schewe, 1999) is perhaps the only two-dimensional LCO experimental data currently available in the

literature. Those test data have in fact been used by Platzer’s group (Weber et al., 2001; Castro et al., 2000) to validate

their thin-layer Navier–Stokes aeroelastic solver. While the emphasis of Weber et al. (2001) and Castro et al. (2000) was

on the predictive capability of the thin-layer Navier–Stokes aeroelastic solver, our emphasis here is to investigate the

impact of nonlinear aerodynamics, such as the viscosity, turbulence modelling and the initial perturbation size, on the

computed transonic LCO behavior of the supercritical airfoil, the topics of the TSS model. On the other hand, the

employed structural model is still linear. Also addressed in the paper are the issues related to multiblock MPI

parallelization aspects of the aeroelastic computations.

2. Numerical methodology

CFL3D v6 solves the thin-layer Reynolds averaged Navier–Stokes equations. In the present computations, the

inviscid terms are computed using the flux-difference splitting method of Roe (1981) and a third-order upwind-biased

spatial differencing with flux limiting in the presence of shocks. The viscous terms are discretized using second-order

central differencing. For time discretization, first-order backward differencing is used for steady calculations while

second-order backward differencing with pseudo-time subiterations is used for static and dynamic aeroelastic

calculations. The employed turbulence models are the Spalart–Allmaras model (Spalart and Allmaras, 1992) and the

Baldwin–Lomax model with the Degani–Schiff modification (Degani and Schiff, 1983). A detailed description of the

code can be found in Krist et al. (1997).

One of the most important features of the CFL3D v6 code is its capability to simultaneously compute solutions on

multiple zone grids with one-to-one connectivity by using the parallel MPI routines. Spatial accuracy is maintained at

zone boundaries, although subiterative updating of boundary information is required. Coarse-grained parallelization

using the MPI protocol can be utilized in multiblock computations by solving one or more blocks per processor. As a

result, the time required for a CFD-based aeroelastic computation can be drastically reduced. When there are more

blocks than processors, optimal performance is achieved by allocating an equal number of grid points to each

processor.

In this paper, both single and multiblock MPI parallel aeroelastic computations near the onset of flutter LCO are

compared with experiment and with other computations. Fig. 1 shows the C-type grid with 273� 93 mesh points
around the NLR7301 airfoil that has been divided into eight 69� 47 blocks. This and a single block version of the grid
are used in the computations to follow.

In order to accommodate multiblock computations, the mesh deformation scheme employed in Bartels

(2000) is slightly modified. In Bartels (2000), the remeshing scheme uses a modified spring analogy with solid body

translation/rotation of the fluid mesh near solid surfaces. Initialization of the grid deformation at each time step is

performed using a transfinite interpolation (TFI) step. The mesh interior is then smoothed using the modified spring

analogy.

In the present implementation, the subgrid-based TFI scheme of Hartwich and Agrawal (1997) has been employed

for grid initialization at each time step. This method uses subgrids consisting of ‘‘slave vertices’’ to move both block
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boundaries and interiors. In some instances, in order to achieve an optimal division of grid points, it is necessary to

place flow field block boundaries near a moving solid surface. An example of this is shown in Fig. 1. The multiblock

boundary and interior movement scheme allows the user to place block boundaries near surfaces as necessary for

optimal parallelization. Boundaries interior to the fluid domain near a surface respond to the local surface motion. As

the airfoil moves, block boundaries move to maintain integrity of block interfaces and the airfoil surface.

Users have the option to specify whether to update the grid using this subgrid/TFI-based scheme alone, or to update

the grid with an initialization using this scheme plus additional smoothing steps. These added smoothing steps, the

number of which can be defined by the user also, employ the modified spring analogy scheme (Bartels, 2000). In the

current implementation, the spring analogy scheme updating the mesh interior is now written in delta formulation so

that the relative orientation of the original grid is retained. The solid body rotation/translation of the fluid grid is also

now performed near both solid surface and block fluid boundaries.

The time-marching simulation of the aeroelastic system is conducted using the state transition matrix solution from t

to t þ Dt of the state variable representation of the decoupled modal equations (Edwards et al., 1983; Cunningham et al.,

1988). The state transition matrix-based scheme is optimal in the sense that it is derived from an exact solution of the

free response of the modal equations. The actual scheme uses a predictor/corrector procedure. The predictor step

marches the structure using the solution of the modal equations at the time step n to get the surface deflection at the

time step n þ 1: This provides the surface shape for a recomputation of the fluid mesh and the fluid domain solution at
n þ 1: After a solution of the fluid domain involving multiple subiterations, the corrector step then solves the modal
equations at the time step n þ 1 using the averaged generalized forces at n and n þ 1:
Because the CFD and CSM meshes usually do not match at the interface, CFD/CSM coupling requires a surface

spline interpolation between the two domains. The conservative interpolation of CSM mode shapes to CFD surface

grid points is done as a preprocessing step. Modal deflections at all CFD surface grids are first generated. Modal data at

these points are then segmented based on the splitting of the flow field blocks. Mode shape displacements located at

CFD surface grid points of each segment are used in the integration of the generalized modal forces and in the

computation of the deflected surface. The final surface deformation at each time step is a linear superposition of all the

modal deflections.

The following is an account of our theoretical modelling of Schewe’s experiment on transonic flutter of a two-

dimensional supercritical wing with an NLR7301 airfoil section (Schewe and Deyhle, 1996; Knipfer et al., 1998; Knipfer

and Schewe, 1999). Fig. 2 depicts a simplified model of the two-degree-of-freedom test set-up. The two-dimensional

wing has a chord length of 0.3m (c ¼ 0:3m) and a span of 1m (b ¼ 1m). The plunge spring and the pitch spring are

Fig. 1. Multiblock C-type grid around NLR 7301 airfoil (eight 69� 47 blocks).
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attached to the same c=4 position. The corresponding two-degree-of-freedom equation of motion of the set-up reads as

mh �sa
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where mh is the total mass (mh ¼ 26:64 kg), Ic=4 is the mass moment of inertia about c=4 (Ic=4 ¼ 0:086 kgm2), sa is the

static unbalance (sa ¼ 0:378 kgm), Dh and Da are the damping factors of the plunge motion (h) and the pitch motion

(a), respectively (Dh ¼ 82:9 kg/s and Da ¼ 0:197 kgm2/rad/s), Kh and Ka are the stiffness of the plunge spring and the

pitch spring, respectively (Kh ¼ 1:21� 106 N/m and Ka ¼ 6:68� 103 Nm/rad), and LðtÞ and MðtÞ are the aerodynamic
lift and moment, respectively, in Newton and Newton-meter.

The aeroelastic equations and the CFD grid are maintained in dimensional form. To perform the time-marching

CFD computation in CFL3D v6, it is necessary to convert Eq. (1) into modal coordinates, i.e.,

h

a

( )
¼ ½f�fqg; ð2Þ

where q is the modal coordinate and f is the modal matrix of the undamped structure. For this numerical example we
have

f ¼
�0:1735 0:1004
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Substituting Eq. (2) into Eq. (1) and pre-multiplying the resulting equation by fT yields
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where oh and oa are the undamped natural frequencies of the plunge and pitch motions, respectively (oh ¼ 205:4 rad/s
and oa ¼ 299:3 rad/s), zh and za are the plunge and pitch damping ratios, respectively (zh ¼ 0:00649 and za ¼ 0:00521).
Note that the off-diagonal terms in the damping matrix are assumed to be zero for simplicity.

3. Results and discussion

The case simulated is measurement no. 77 documented in Knipfer et al. (1998). As mentioned before, the

experimental model is a two-dimensional supercritical wing with the NLR7301 airfoil section. The chord length of the

wing is 0.3m and the mean angle of attack is 1.281. The experimental conditions are the free-stream Mach number of

0.768 and the Reynolds number of 1:727� 106 based on the chord length. A transonic LCO in two degree of freedom is
experimentally observed at a dynamic pressure of 0.126 bar. The corresponding free-stream velocity is 254.7m/s, and

the total pressure is 0.45 bar.
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Fig. 2. Two-degree-of-freedom dynamic model.
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3.1. Time-averaged surface pressure distribution

As pointed out in Weber et al. (2001) and Castro et al. (2000), due to the relatively large chord length of the airfoil

with respect to the wind tunnel test-section (1m� 1m), both the free-stream Mach number and the angle of attack need
to be corrected in the computations in order to take into account wind tunnel wall effects if the tunnel wall boundary

conditions are not explicitly introduced. The criterion used in Weber et al. (2001) and Castro et al. (2000) is to make

corrections in such a manner that the computed and measured time-averaged surface pressure distribution match. In

this way, a wind tunnel wall correction is realized in a certain averaged sense.

Computations are performed to search the flow conditions which best meet the wind tunnel conditions in the

computations with the different flow models. An Euler computation is first performed on a C-type grid with 273� 61
points. The best agreement with the experimental data is found at MN ¼ 0:734 and a ¼ �0:251: Fig. 3 indicates that
even for this corrected Mach number and the corrected angle of attack, the predicted shock strength is stronger than the

experimental result, and the location of the shock is behind the measured one. It appears to be impossible to match both

the measured strength and location of the shock using the Euler computation. Two viscous computations are then

performed on a C-type grid with 273� 93 points. One uses the Degani–Schiff modified Baldwin–Lomax turbulence
model (B–L–D–S), and the other uses the Spalart–Allmaras turbulence model (S–A). The corrected Mach number is

found to be 0.748 for both models while the corrected angle of attack is �0.021 for the B–L–D–S model and 0.151 for
the S–A model. It can be seen in Fig. 3 that both viscous results have much closer agreement with the experimental data,

especially for the shock strength and location, clearly showing that viscous effects are crucial for accurate modelling.

Fig. 3. Time-averaged surface pressure distribution (spring-off).

Table 1

Initial conditions for LCO computations

Method MN a (deg)

Euler Spring-off 0.734 �0.25
Spring-on 0.734 �0.1

B–L–D–S Spring-off 0.748 �0.02
Spring-on 0.748 0.15

S–A Spring-off 0.748 0.15

Spring-on 0.748 0.32
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The above computed results are for the spring-off condition, in which the wing is assumed as rigidly mounted in the

computation. By taking into account the contribution from the structural flexibility (the spring-on condition), the

corrected angle of attack becomes �0.11 for the Euler computation, 0.151 for the B–L–D–S viscous model, and 0.321 for
the S–A viscous model, while the corrected Mach number does not change. This is because, for a two-dimensional

model, structural flexibility only affects the rotation of the model. These corrected Mach numbers and angles of attack

for the spring-on conditions (see Table 1) will be used as inputs for further dynamic aeroelastic computations except

those in the next section, where the conditions of Weber et al. (2001), the corrected Mach number of 0.753 and the

corrected angle of attack of 0.61, are used in order to compare our computed flutter results with theirs under the same

conditions.

One important phenomenon in Fig. 4 is that the B–L–D–S model produces a pressure or lift loss on the lower

surface near the trailing edge, which is not found in Fig. 3, the spring-off condition. In order to understand

the mechanism behind this phenomenon, Fig. 5 presents the entropy contours given by the two turbulence

models. It is found that the B–L–D–S model seems to produce spurious vorticity on the lower surface near the trailing

edge.

3.2. Performance and time-step convergence

The static aeroelastic case is used to compare run times between the single block/sequential, eight block/sequential,

and eight block/MPI parallel computations. Starting from a steady state a time-accurate aeroelastic solution is marched

for 800 time steps with five multigrid subiterations each. The S–A turbulence model is used in each case.

Fig. 4. Time-averaged surface pressure distribution (spring-on).

Fig. 5. Entropy contours (spring-on): (a) by B–L–D–S model; (b) by S–A model.
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Table 2 gives computational performance results for various grids, run modes, and code configurations. The first two

rows correspond to sequential computations of the single and eight block versions of the grid. The eight-block grid

takes 28% less CPU time than the single-block grid on a SGI Origin 2000 machine, apparently due to better caching of

the smaller sized blocks. The parallel computation with eight processors runs 7.8 times faster than the same run

sequentially, clearly showing the time saving by parallel computation. The last two rows present the computational

effort required for the spring analogy-based smoothing step, and the TFI grid movement along with the aeroelastic

computation. Three iterations of the spring analogy scheme add about 1.5% computing time to the solution, and the

TFI grid movement along with the aeroelastic computation adds about 10% to the run time.

Table 3 shows the computed flutter amplitudes and frequency based on the single-block grid using successively

smaller time-step sizes. These results are further compared with the computed flutter results of Weber et al. (2001) and

the experimental data of Knipfer et al. (1998). Following the computations of Weber et al. (2001), the LCO

computations here are also performed at M ¼ 0:753; a ¼ 0:61; and a dynamic pressure of 0.126 bar, using the S–A
model. Initialization is accomplished with a static aeroelastic solution followed by an initial perturbation of �0.00114 in
the velocity of the second structural mode for the dynamic simulation. The chosen time-step sizes result in 80, 250, and

800 time steps per plunge/pitch cycle. Nine subiterations per time step are used. Columns two and three are half

amplitudes of the fully developed LCO plunge and pitch motions, while column four is the plunge/pitch frequency. As

can be seen in Table 3, our computed flutter results are comparable with those of Weber et al. (2001). While our

computed flutter amplitudes at smaller time-step sizes are slightly more accurate, the computed flutter frequencies of

Weber et al. (2001) are slightly closer to the experiment. It is expected that with smaller time-step sizes, the computed

flutter amplitudes and frequency are closer to the experimental data. However, even with the smallest time-step size, the

computed flutter amplitudes are still one order of magnitude larger than the experimental data. This is possibly because

the wind tunnel wall boundary conditions are not explicitly introduced into the computation. Readers are referred to

Castro et al. (2000) for the computed LCO results from the computations with the explicit implementation of tunnel

wall boundary conditions. Another possible reason is that although the structural characteristics of the test model is

two dimensional, the three-dimensional aerodynamic effect, which is missing in our two-dimensional CFD simulation,

is important because of the relatively large chord length of the airfoil with respect to the wind tunnel test-section.

The above flutter amplitudes and frequencies are computed based on a sampling of the last 8–10 cycles of motion in

which the data appears to eventually converge to an LCO for the two smaller time-step sizes. For the largest time-step

size, however, the computed amplitudes continue to slowly grow even after 100 cycles. Therefore, the smallest time-step

size with nine multigrid subiterations is used for all of the remaining dynamic computations presented.

The speed increase offered by computing in parallel is appealing. There is however trade-offs when using coarse grain

parallelization. As can be seen from Fig. 6, the amplitude and frequency of the multiblock plunge and pitch motions

eventually converge to the values virtually identical to that of the single block grid (ah ¼ 8:87mm, aa ¼ 3:131;
f ¼ 34:3Hz). However, the time at which the LCO can be considered as converged is different between the two

Table 2

Cost/performance

Grid/computational type TFI Spring analogy smoothing CPU time/processor (s)

1 block/sequential Yes Yes 8800

8 block/sequential Yes Yes 5430

8 block/MPI Yes Yes 690

8 block/MPI Yes No 680

8 block/MPIa No No 610

aAlso without aeroelasticity.

Table 3

Flutter results

ah (mm) aa (deg) f (Hz)

Dt ¼ 0:128 11.2 3.72 34.5

Dt ¼ 0:040 9.17 3.24 34.3

Dt ¼ 0:0125 8.99 3.17 34.3

Weber et al. (2001) 10.5 4.09 33.42

Experiment 0.65 0.18 32.85
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Fig. 6. Comparison of single/multiblock grid computation (N–S, Ma ¼ 0:753; a ¼ 0:61), t0 ¼ 0 s (1 block), t0 ¼ 4:5 s (8 blocks): (a)
plunge motion; (b) pitch motion.

Fig. 7. LCO predicted by Euler/N–S methods: (a) plunge motion; (b) pitch motion.
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Fig. 8. Predicted density contours: (a) by B–L–D–S model; (b) by S–A model.
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computations, and this accounts for the different values of t0 for the single block and eight block computations. It can

be seen that the LCO computed with eight flow field blocks takes much longer to develop than does an identical LCO

computed on a single flow field block. So, all of the following dynamic computations are based on a single block grid.

3.3. Effect of viscosity and turbulence modelling

Fig. 7 compares LCO predicted by Euler and Navier–Stokes methods. It is found that although both inviscid and

viscous computations are able to predict LCO, the amplitude of LCO predicted by the viscous computations is less than
1
3
of that predicted by the inviscid computation, much closer to the experimental data. This indicates that as one would

expect, it is important to include the viscous terms in LCO computations to limit the amplitude of the flutter LCO.

Also shown in Fig. 7 is the difference between the computed LCO by the two viscous methods. It is found that the B–

L–D–S model reaches large amplitude limit cycle quite rapidly. Plunge and pitch amplitudes of the B–L–D–S result are

approximately 4mm and 21, respectively, and the predicted frequency is 32.2Hz. On the other hand, the S–A model

reaches LCO much later. Its plunge and pitch amplitudes are larger than those given by the B–L–D–S model, around

9mm and 31, respectively. Furthermore, the B–L–D–S LCO is random/chaotic while the S–A LCO is periodic. It can be

seen that the specific turbulence model used can significantly alter the nature of the LCO solution.

In order to understand the mechanism behind the differences caused by the two turbulence models, Fig. 8 further

presents the predicted density contours at 8 time steps uniformly distributed in the last cycle. The B–L–D–S results

presented at the left-hand side clearly show multishocks with large excursions possibly caused by spurious vorticity

spots. This is why the B–L–D–S LCO exhibits chaotic behavior. On the other hand, no visible vorticity spots are found

in the S–A results presented at the right-hand side. As a result, the flow pattern is much more regular. It is noteworthy

that smaller time-step sizes and more subiterations have been tested for the B–L–D–S model but the difference of the

results are not visible. It is possible that the current implementation of the Degani–Schiff modification to the Baldwin–

Lomax model in CFL3D v6 code somehow causes spurious vorticity spots.

3.4. Effect of perturbation size

The above LCO computations are performed with a small initial perturbation, �0.0012 in the velocity of the first
mode, which is about 0.0082% of the free-stream speed. In order to investigate the effect of initial perturbation size on

the resulting LCO, the earlier S–A viscous computations are repeated with the two larger initial perturbations. The one

referred to as the medium perturbation in Figs. 9 and 10 has five times of the original perturbation size, and that

referred to as the large perturbation has 10 times of the original perturbation size.

Fig. 9 indicates that compared to the small perturbation, LCO occurs earlier, and the amplitudes of both plunge and

pitch modes are slightly reduced for the medium perturbation. Further increasing the perturbation size by two, a

damped solution is achieved. This is contradictory to what one might expect. In order to understand the above

Fig. 9. Effect of initial perturbation sizes: (a) plunge motion; (b) pitch motion.
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phenomena, Fig. 10 further compares the predicted density contours at 32 time steps uniformly distributed in the first

three cycles and the last fully LCO cycle for the three different sizes of perturbation side-by-side. It is found that for the

small perturbation, initially there is only mild shock and boundary layer separation present in the flowfield. The lack of

strong nonlinearity in the flowfield allows the amplitudes of both plunge and pitch motions to grow gradually up to the

values which cause strong shocks and large boundary layer separation, as shown in Fig. 10(d). Then an LCO forms. It is

also found that for the small perturbation, initially the flowfield does not change too much from cycle to cycle.

Therefore the final LCO mean airfoil position does not shift. For the medium perturbation, a similar process happens

except that stronger shocks exist initially. After the first cycle, the airfoil does not go back to the original position and

the flow patterns of the second cycle do not repeat those of the first cycle. Therefore the final LCO mean airfoil position

shifts slightly. This can be seen by comparing Fig. 10(a) with Fig. 10(d). Finally, the flow patterns for the large

perturbation are quite different from those for the small and medium perturbations. Very strong shocks and large

boundary layer separation exist even in the first cycle. The resulting nonlinear effect damps the amplitudes of both

Fig. 10. Density contours showing effect of initial perturbation sizes: (a) 1st cycle; (b) 2nd cycle; (c) 3rd cycle; (d) final LCO cycle.
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plunge and pitch motions from the beginning. After the first three cycles, the flow patterns just start to be stable from

cycle to cycle and the final mean airfoil plunge and pitch positions shift. In the cases initiated by large amplitude

perturbations that were examined, nonlinear aerodynamic effects tend to reduce and eventually eliminate LCO

amplitudes. However, the range of parameters investigated is relatively limited. A more extensive study (both

numerically and experimentally) on this topic is needed.

4. Conclusions

A numerical study has been conducted to investigate the impact of nonlinear aerodynamics, such as the viscosity,

turbulence modelling and the initial perturbation sizes, on the transonic LCO behaviors. It has been found that the

Navier–Stokes computed LCO amplitude is less than 1
3
of that as determined by an Euler computation and is much

Fig. 10 (continued).

L. Tang et al. / Journal of Fluids and Structures 17 (2003) 29–4140



closer to the experimental data. However, it has been observed that the Navier–Stokes computation of LCO is quite

dependent on the turbulence model employed. The Degani–Schiff modification to the Baldwin–Lomax turbulence

model provokes spurious vorticity spots causing multiple shocks which might be unphysical, while the Spalart–

Allmaras turbulence model yields physically reasonable unsteady shocks. The initial perturbation intensity has a strong

influence with an unexpected diminishing effect on the amplitudes of the computed limit cycle. Also affected by the

initial perturbation are the LCO mean airfoil plunge and pitch positions.
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